
sdlib: A Sensor Network Data & Communications
Library for Rapid & Robust Application Development

David Chu
EECS Department

UC Berkeley
Berkeley, CA

davidchu@cs.berkeley.edu

Wei Hong
Arched Rock
Berkeley, CA

wei.hong@archedrock.com

Abstract—Sensor network applications tend to exhibit significant
high-level commonalities along several major dimensions that
have heretofore been underexposed. We are developing a
component library, sdlib, which presents the fundamental
abstractions, while operating efficiently.

I. INTRODUCTION
Many useful abstractions have existed for some time in

TinyOS, the sensor network operating system: GenericComm
for link layer transmissions, Timer for timing events, and ADC
for analog to digital conversions and sensor readings.
However, these abstractions are low-level; the application
developer still undertakes a sizable challenge when attempting
to design her particular application. For example, suppose our
application developer desires to build a best-effort video
monitoring application. If the de facto standard nesC is the
programming language chosen, at a minimum, the novice must
master split-phase asynchronous programming, sidestep
insidious race conditions, and gracefully handle resource
contention. Moreover, the non-expert and expert developer
both face significant challenges building plumbing for handling
queries and network-wide data delivery.

It is unfortunate then, that our developer can only benefit
minimally from another recently completed reliable-delivery
vibration event detection application, which possesses both
significant similarities (e.g. large data objects; query handling;
Flash storage buffering) and differences (e.g. need for retries;
monitored polling vs. event triggered) with her own. Yet in
order to successfully make use of it, she must first know about
the existence of this foreign application, entrust in its maturity,
extract the relevant similarities and adapt them to suit her
needs. Clearly this approach to reuse is not scalable (with the
number of “reusable” applications), is error-prone, and is
tedious.

Daunted by these obstacles, or simply by lack of knowing
about pertinent similar applications, our application developer
may choose to use high-level languages, such as TinyDB’s
TinySQL [1], SNACK [2], or Mate’s various languages [3].
None of the aforementioned high-level languages provides
direct support for large data objects, a fundamental requirement
for our example application. In general, a high-level language
is a suitable choice only if the user’s task is within the scope of
the chosen high-level language

We seek the middle ground. The goal of this work is to
identify common functionality among a broad range of sensor
network applications yearning for appropriate abstractions, and
develop a library of thoroughly-tested, reusable and efficient
nesC components that present the fundamental high-level
operations while parameterizing essential differences. We call
this library sdlib: Sensor Data Library. We draw an analogy to
the traditional C++ STL. Sdlib provides powerful components
for the reoccurring common cases. Simultaneously, because
sdlib is implemented as a collection of nesC components, the
developer retains unfettered access to low-level operations
when desired.

Sdlib will not eliminate asynchronous operations, race
conditions, or resource contention. Eliminating these usually
incurs an unacceptable system penalty. Rather, sdlib enables
the developer to relieve herself of a system full of such
concerns and instead directs focus to the core application-
specific module which can be more easily debugged. A set of
composable components can greatly simplify the development
task and mitigate the developer’s worries.

Yet successful libraries offer generality without sacrificing
efficiency. Efficiency of operations is particularly critical for
sensor networks due to battery life, RAM/ROM and other
resource constraints. Here sdlib exposes policy decisions such
as resource allocation and rate of operation to the developer,
while hiding the mechanisms of policy enforcement.

II. UNCOVERING PATTERNS
Our first task was to identify the various commonalities

among existing sensor network applications. To gain an
appreciation for the diversity of applications, we analyzed 13
sensor network applications: Nucleus [4], TinyDB, Deluge,
Drip, Drain, Beacon Vector Routing (BVR), Tour Routing
(TR), Directed Acyclic Graph Routing (DAGR), Base2Point
Routing (B2PR), Synopsis Diffusion (SD), Golden Gate Bridge
App (GGB), and Fabrication Equipment App (FAB), IMote2
Video App (VID) [5]. A fraction of these are not applications
proper, but rather are service layers. Routing services have
been abundant: BVR, Drain, DAGR, B2PR, SD. Others are
dissemination services: Deluge, Drip. Of the applications,
Nucleus and TinyDB provide general query engines to
attributes. However, not all applications’ needs are met by
these existing systems and, as a result, application specific
query engines arose: GGB, VID and FAB.

Figure 1. Component diagram of an example application using sdlib.

This is but one way to categorize these applications. After
analysis, we extracted the following dimensions of variability:

• Source & Destination: Most of the applications offer
only sending messages from the base station of a
network along a spanning tree down to all nodes, or
from one node up to the root. On the other hand,
Deluge and Drip deliver messages to all nodes in the
network. TR specifies a sequence of destinations.
BVR offers virtual coordinate geographic coordinates.

• Routing: SD, TinyDB, Drain, DAGR and B2PR route
along a gradient wrt the base station, whereas Deluge
and Drip resemble intelligent global flooding. TR
specifies a source route. BVR routes greedy-
geographically.

• Data size: Deluge, GGB, FAB and VID must handle
transport of large data objects whereas Drip, Nucleus
and TinyDB handle only small objects.

• Reliability: GGB users demand reliable data
transmission. On the other hand, Nucleus, TinyDB
provide best-effort service.

• Base station: Several applications accord special status
to the base station, though do so in different ways.
Nodes in GGB, FAB, VID and TinyDB generate data
for consumption by the base station whereas Deluge
and Drip invert this relationship and cast the base
station as the data generator with the nodes as data
consumers.

The overlaps in these communication patterns appeared
substantial, though the differences were also significant. We
next chose several of these dimensions to initially incorporate
in sdlib.

III. SYSTEM DESIGN AND IMPLEMENTATION
We have completed an iteration of sdlib that initially

supports (1) transporting large and small data objects and (2)
unreliable and reliable data transport. Figure 1. shows the
component diagram of an example application using sdlib. The
query engine is the central point of control. The user’s
parameterization of the system optionally brings in auxiliary
components, such as the ReliabilityMan, which handles acks
and retransmissions. In this way, sdlib presents its library of
services. The query engine receives queries through various
communication channels and dispatches accordingly to the
relevant attributes. The developer implements the appropriate
attributes (often sensors) for her application. We built upon

Nucleus’ query engine, which provides support for unreliably
transporting small data objects. Sdlib also optionally generates
schema attributes that support run-time attribute discovery.

Sdlib exposes a simple, flexible, and efficient interface to
the developer. Our developer, responsible for delivering a
system that acquires results from a new vibration sensor
(considered a large object), only needs to implement the logic
of a simple interface for the VibrationAttr component. The
two core functions are:

command result_t get(Buffer_t *pInitialBuf);

event Buffer_t*
givePiece(Buffer_t *pBuf, int len, bool last);

These require no more than the developer filling the buffer
pInitiialBuf with sensor output when get() is called, and
signaling givePiece() in response. A return value
immediately provides a new buffer to which to copy more
output, and issue subsequent givePiece() signals; this process
is efficiently driven at the sensor’s rate of data production.

Where do the buffers come from? In order to support
efficient resource allocation, the developer decides which
attributes, if any, share buffers and other resources when
implementing the call:

command result_t
giveResources (Resources_t *resources);

The developer merely allocates the data structure for
resources. Sdlib handles all aspects of using the structure.

Auto-generated attribute

QueryEngine

User’s attributes
VideoAttr VibrationAttr

Auxiliary components

BufferMan
ReliabilityMan

ReferenceMan

AttributeSchemaAttr

IV. NEXT STEPS
The current design readily supports GGB, VID and FAB, in

addition to its base, Nucleus. We plan to iterate on sdlib to
support increasingly disparate applications: TinyDB, SD
strongly suggest a need for user-designed in-network data
operators, much like the currently supported user-designed
attributes. Deluge’s bulk data transfer requires applications
receive, as well as send large data objects. Many of the
applications could greatly benefit from a unified yet efficient
addressing, naming and routing scheme.

ACKNOWLEDGMENT
The authors thank the members of the sdlib group for

invaluable dialog: Cheng Tien Ee, Joe Hellerstein, Phil Levis,
Sam Madden, and Gilman Tolle.

REFERENCES
[1] S. Madden and M. Franklin and J. Hellerstein and W. Hong, “The design

of an acquisitional query processor for sensor networks," Proc. ACM
SIGMOD 2003, June 2003, San Diego, California.

[2] B. Greenstein, E. Kohler, and D. Estrin, “A Sensor Network Application
Construction Kit (SNACK),” Proc. ACM SenSys 2004, November 2004,
Baltimore, Maryland.

[3] P. Levis, D. Gay and D. Culler, “Active sensor networks,” Proc.
ACM/USENIX NSDI 2005, March 2005, Boston, Massachusetts

[4] G. Tolle, and D. Culler, “Design of an Application-Cooperative
Management System for Wireless Sensor Networks,” Proc. EWSN
2005, January 2005, Istanbull, Turkey.

[5] D. Chu, “Listing and further description of studied applications,”
www.cs.berkeley.edu/~davidchu/sdlib/studiedapps.

	I. Introduction
	II. Uncovering patterns
	III. System design and implementation
	IV. Next steps
	Acknowledgment
	References

