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I. INTRODUCTION

In practice, terminals in wireless networks usually belong to
different individual users. Therefore, these terminals inherently
care more about their own benefit than the overall system
benefit. This kind of selfishness is especially emphasized in
medium access control, where each transmitting user in the
system wants to let his/her packet get through to the respective
receiver as early as possible, while incurring minimum energy
expenditure. Game theory, originally used in economics to
model human interactions, is a powerful tool to analyze and
solve self-centric problems in distributed systems. It is attract-
ing more and more attention from the wireless networking
research community in recent years.

In game theory, each selfish player’s goal is to choose a
possible strategy or a probabilistic mixture of strategies in the
strategy space to maximize his/her own utility function [1].
The Nash equilibrium is an important concept in game theory
for both pure strategy and mixed strategy games. A Nash
equilibrium is a set of pure/mixed strategies, one for each
player, such that no player has incentive to unilaterally deviate
from this set.

II. PROBLEM FORMULATION

We first describe the assumptions underlying our medium
access game problem formulation. We assume that there are�

player nodes contending for access on a common medium
(e.g., trying to transmit to the same receiver). The players
all have the same priority, the same workload and the same
remaining power at the beginning. In the one-shot game we
discuss here, each node has only one packet to transmit in a
single frame consisting of � slots (this is a key difference
from prior game theoretic treatments of slotted Aloha [2]). A
node’s transmission in a given slot is successful if and only if
all other nodes do not transmit in that slot. We also assume that
the nodes are selfish but rational; a node that has transmitted
successfully in one slot will not transmit in later slots.

A. The Utility Function

The utility function is an important component for a game
theoretic formulation. It expresses how much a player gains
by taking a certain action. For our slotted medium access
problem, we consider two major factors: time delay and power
consumption.

In every slot, each player has two possible actions: transmit
( � ) or wait ( � ). We define the transmission cost for player �
to be ��� and waiting cost to be � . In practice, �	� can represent
the power consumption of transmission. If the transmission
fails (due to a collision with another player), player � ’s benefit
is � . If the transmission succeeds in slot 
 , player � will get
benefit of �
������� , where � denotes the benefit value from
successful transmission in slot � and � is defined to be a decay
parameter whose value is in �����	��� . This � parameter is related
to delay as it gives players an incentive to finish transmission
as early as possible. Without loss of generality, we set � to be
1 and use normalized transmission cost � � . Let ��������
�� denote
the utility for player � in slot 
 . Then we have the following
utility function:��� ����
��"! #$ % � �'&(�*)+ �,� -
&(�/. 021�)/34&(576	89�:626	�*;25�
� �2��� + ���=<?>@����046262AB>B.C)/34&(576,8D�:626,�/;25

(1)
In order to let each player have enough incentive to transmit

even in the last slot of a frame, we let �FEG��HI���KJL��� ,
where � denotes total number of slots in our one-shot game.
The strategy space for player � can be expressed as a row
vector of player � ’s transmission probability M � N � in slot 
 .
Let . � denote the strategy space of player � , then we have. � !O�PM � N � ��M � N Q �	RSRTRT� M � N H � .
B. The Global Optimal Formulation

In our first approach we look at the global optimum cooper-
ative solution for this problem, which maximizes the utility for
all players. We force all players to take symmetric strategies,
which provides fairness when they all have the same payoff
function.

The following is the expression of expected payoff for
player � over all the slots in the game:U �V�W�V�W! XY:Z N Y*[ N]\]\]\]N Y/^`_ � Ha�cbC� d �e �2f M Y:g� Eh�i� + M � �:j � Y:g �

E HX�cbC� ��������
k�*l +nm �V�W��� (2)

In Equation 2,
e � !o���,�p��q��,RTRSRT� � for all 
r!s����qt�vukRSRTRT�v� .U �*�"��� denotes the expected payoff for player � . �

represents
the total number of players in the game. M � denotes the
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transmit probability in slot 
 . Since the strategy is symmetric,
we can simplify the notation MB� N � to M � . ��� ����
�� denotes the
utility for player � in slot 
 with the corresponding strategy.
The function m �*�W�V� denotes the invalid combinations in
the strategy space. For example, if one player successfully
transmitted in a previous slot, he cannot transmit again in all
the following slots. The expression for m �V� � � is omitted here
for brevity.

Our objective for the global optimization formulation is to
maximize the value of

U �V� � � in a � -dimension space. That
is, m &(w U �V�"�V�6	>�x e 02�c)y):;s��z{M � z|�}A@;23~
�!��p��q��,RTRSRT�v�
C. The Mixed Strategy Equilibrium

While the formulation of the previous section is straightfor-
ward, that global optimum cannot be attained in the presence
of selfish users that would cheat to maximize their own benefit.
To characterize the selfishness of players in the system, a
mixed strategy equilibrium solution is necessary.

According to game theory, at an equilibrium point, no player
has the incentive to unilaterally change his action. A mixed
strategy game always has a Nash Equilibrium. Similar to
Section II-B, the expected payoff over all the slots for player� is presented in Equation 3.U �V� � ��! X�`�V� g _ � Ha�cbC� jaY bC� M � �V� gY N � Er�:� + M Y N � � �c� �`�V� g �

E HX�cb�� ��� ����
��*l +rm �*� � � (3)

In this equation, 8 Y N � !����,� for all the � e ��
�� tuples. In slot
 , 8 Y N � !�� implies that player
e

acts waiting and 8 Y N � !��
implies that player

e
transmits. ��������
k� denotes the payoff for

player � in slot 
 considering the current actions of each player.m �V�"�V� denotes the sum of the invalid combinations, as before.
In order to get the equilibrium solution, we take partial

differential of each M ��N � with
U �V� � � and get a set of equations:� U �V� � �� M�� N � !K���`�@����
 (4)

D. Illustration using a simple q�E�q Game

In order to demonstrate the usage of both formulations, we
show an example of a q�E�q game in this section. The game
has two players who are trying to finish transmission in two
time slots. The payoffs for each player with different strategies
are listed in table II-D.

For this q`E
q game, there are q Q E
q Q !��	� possible actions.
Since each player only has one packet to transmit in each
frame, there are q�E~q
!�� invalid combinations. We calculate
the expected payoff for player � over all the remaining ��q
different strategy combinations.

We plot the expected payoff value of two slots as a function
of M � and M�Q in Fig 1. We can see that the global optimal

players in slot 1 Transmit Wait
Transmit (-1,-1) (0,1)

Wait (1,0) (0,0)
players in slot 2 Transmit Wait

Transmit (-1,-1) (0,0.5)
Wait (0.5,0) (0,0)

TABLE I

PAYOFF VALUES OF EACH STRATEGY FOR TWO PLAYERS
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Fig. 1. Expected Payoff for �"��� game with symmetric strategy constrains

expected payoff for each player is
U !���RT�	u(��q when M � !��R]q�� and M Q !F��RT��� . Note that both players have the same

expected payoff in this illustration since they have identical
payoff functions and employ symmetric strategies.

For the mixed strategy equilibrium solution, according to the
definition in equation 4, we take derivatives of the expected
payoff expression by M � N � and M � N Q separately and set the partial
differential to zero. We do the same operation on player 2. The
resultant equations yield the following solution: M � N � !rM Q�N � !��R ����q�� and M � N Q�!�MBQ�N Q�!��kRS�	����� . The expected payoff for
each player is

U !���R �p����� . Although the strategies were not
predetermined to be symmetric in this non-cooperative game
(unlike in the global optimum solution), the symmetric payoff
functions for the two players results in a symmetric strategy
set at equilibrium.

III. CONCLUSIONS AND ONGOING WORK

We notice that the cooperative global optimization formu-
lation provides a fair Pareto optimal solution that provides a
reward for each player that is more than twice compared to
that obtained in the non-cooperative game with selfish users.
This is the motivation for our ongoing work on developing
a mechanism with a more efficient equilibrium point. We
are also working on computationally tractable approaches
for identifying the global optimum and the non-cooperative
equilibrium point in the case of large numbers of users and
slots per frame. In the future, we plan to relax many of the
idealized assumptions in the formulation and consider multi-
hop settings, so that the results can be applied to real-world
medium access standards for wireless ad-hoc networks.

REFERENCES

[1] D. Fundenberg and J. Tirole. In Game theory, 1991.
[2] A. B. MacKenzie and S. B. Wicker. Selfish users in aloha: A game-

theoretic approach. In IEEE Vehicular Technology Conference, October
2001.



Conclusions and Ongoing Work

  Problem Formulation:Problem Formulation:  Global Optimization and Mixed Strategy EquilibriumGlobal Optimization and Mixed Strategy Equilibrium

  An Example for Proposed Solution:An Example for Proposed Solution:  A Simple Game where 2 Players Compete over 2 SlotsA Simple Game where 2 Players Compete over 2 Slots

A Game Theoretic Approach for Slotted Medium AccessA Game Theoretic Approach for Slotted Medium Access
in Wireless Networksin Wireless Networks

Hua Liu and Bhaskar Krishnamachari
(hual@usc.edu, bkrishna@usc.edu )

Departments of Computer Science and Electrical Engineering,
Viterbi School of Engineering, University of Southern California

  Introduction: Introduction: Selfishness, Game Theory and NetworkingSelfishness, Game Theory and Networking
Why Selfishness is important?

• Terminals in wireless networks usually belong to different individual users
• Reasonable to assume each individual only cares about self-gain from the system

• First applied in economics as a powerful tool to simulate behavior of humans
• Even better tool for analyzing and designing networks with distributed selfish entities
• Game theory states that a system will converge to equilibrium if there exists one
• Characterizing and improving the efficiency of this equilibrium is of practical interest

The Distribution of the Expected Payoff

Why Game Theoretic Approach?

Taxonomy of Game Theory
The green path indicates the focus of our work

Assumptions:
• Initially, each node is rational, has the

same workload, and the same priority
• Each player has exactly one packet to

transmit in a frame consisting of multiple
slots (different from prior work [1])

• All nodes share the same channel.
Successful transmission in a slot happens
when only one player transmits

• Each node can either transmit or wait in each slot
• Considers two major parameters: delay and power consumption
• Delay is represented by δ and power consumption is denoted by ci

Global Optimal
Solution

• Game theory has a promising future in solving practical
medium access problems in wireless networks

• The ongoing work is to simplify the computational
complexity of the formulation, and extend the framework
for multi-hop scenarios

• We are also investigating a repeated game framework that
uses the mixed strategy equilibrium to enforce cooperation
among selfish nodes

Mixed Strategy
Solution

 Illustration of The Game

The expected Payoff Function

The Payoff Table 

The Calculation

The Slotted Medium Access Game

A Player’’’’s Expected Payoff Over all Slots

The Utility Function

The Payoff Table for a 2x2 game

Mixed Strategy Equilibrium

• There are totally 16 transmit/wait combinations, 4 of them are invalid. E is the
sum of the remaining 12 valid combinations

The Solutions

The Utility Function

Global Optimization Formulation
• We let the players

have symmetric
strategies to provide
fairness

• M(Ui) represents the
illegal combinations
of transmitting and
waiting: a player will
not transmit again
after having
successfully
transmitted

(0, 0)(0, 1)Wait

(1, 0)(-1, -1)Transmit

WaitTransmit

Player 1

Player 2In Slot 1

(0, 0)(0, 0.5)Wait

(0.5, 0)(-1, -1)Transmit

WaitTransmit

Player 1

Player 2In Slot 2

• According to the symmetric characteristic of the payoff table, p1,1=p2,1 and p1,2=p2,2
• If the payoff table is asymmetric, it is not necessary to have symmetric solution

• Global optimal solution yields better expected payoff for both players
• The system will automatically converge to mixed strategy solution if

there is no policy constraint for selfish users in the system

Solve the following equations to get equilibrium point:

• Global optimization formulation provides
optimal payoff for each player with
consideration of fairness

• Cooperation needs to be enforced to achieve
the optimal solution

• When taking selfishness into consideration,
the system leads to a (generally inferior)
Nash equilibrium point instead of this Pareto
Optimal solution
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mj,k =0,1 for all  (j, k). mj,k=0 implies player j wait
in slot k. mj,k=1 implies player j transmits in slot k

•    pk is the transmit probability in slot k
•   K is the total number of slots
•   N is the total number of players
•   jk =0, 1,2,3,….,N for k=1,2,3,…K


