
DEMO: RealMachine
Graphical programming for WSNs

K. Terfloth, H., Ritter, J. Schiller
Freie Universität Berlin

Takustr. 9
14195 Berlin

+49 (0) 30 838 75123

terfloth|hritter|schiller@inf.fu-berlin.de

ABSTRACT

Programming applications for wireless sensor networks usually
involves expert knowledge of hardware, distributed networking
and the associated problem domain. Realizing even a simple task
like periodic gathering of environmental data results in writing
embedded C code. After compilation, the new binary image has to
be deployed on every node in the network, which cannot, to the
best of our knowledge, be done on a multi-hop path by now. In
order to avoid sending huge images over the small-scale
networks, a virtual machine that is able to interpret byte-code is a
feasible approach. In this demo we will show the usage of
RealMachine, a new kind of virtual machine developed for the
ScatterWeb platform [1]. RealMachine has been designed to
enable graphical programming in a safe and user-friendly
environment, with intuitive tools and a compact byte-code image.
Furthermore, we will demonstrate a very convenient way to
reprogram a deployed network by infecting a single node. This
node initiates the dissemination of the new byte-code and infects
the complete network on a multi-hop path.

FEATURES

The IDE of RealMachine provides means to set up new projects,
to compile them directly into the specific byte-code and to load
them onto an attached node. Figure 1 gives an example.
Applications can easily be composed from modules similar to
flowchart languages allowing users already familiar with symbols
typical for this syntax a fast adaptation. Icons can represent parts
of the sensor nodes, for example a temperature sensor or current
battery level, as well as user components implemented by a user.
To build a new application the user picks an object with the
mouse, drags it into the workspace of RealMachine and drops it
there. A new instance of the kind of object is created and ready to
either get connected to another component, or to be plugged into a
method that shall be invoked. Since objects may have input and
output variables they can be wired respectively on demand.

After a user has created a task by clicking it together, he can
choose to make a new byte-code image and replace an old one on
a sensor node. Therefore, the user may make use of the
ScatterFlasher, a USB device that sends the byte-code over the air
to the nodes. The new application can be routed on a multi-hop
path to every single node of the deployed network without a
single touch and without any cables.

Figure 1: Graphical programming of the RealMachine

REAL MACHINE APPROACH

While the presented solution is oriented at the ideas of a virtual
machine we call it RealMachine as it differs from a classical
virtual machine approach. The RealMachine does not follow the
vision of presenting to the application programmer a full-featured,
though virtual, processor. The main design goal was to build a
virtual machine allowing in principle that a RealMachine-
application runs as fast as a compiled application written in C and
compiled for the same target hardware.
This goal is achieved by exposing complex functions of the
firmware to the byte code level instead of re-implementing them
by basic commands of a virtual processor. For example, a
building block of the IDE that can be used to send a packet over
the network is directly mapped to the function pointer of the
respective firmware function that is used for sending a packet.
Even an application that is written in C and compiled for the
target would not perform faster as it used the same function.
The RealMachine and its IDE are especially adapted to the typical
programming paradigm of embedded systems like wireless sensor
nodes. The RealMachine provides entry points for methods that
are called if an event of a pre-defined type (like a special sensor
event, or incoming data packets) occurs. The IDE allows the user
to graphically program the method for each possible sensor event,
while the RealMachine handles the assignment of these methods
to the respective firmware callback functions. Timer events are
handled in a similar way.
The demonstration covers:
 Graphical programming with the IDE
 Compiling, downloading, flashing at one click
 Over-the-air reprogramming over multiple hops

The demonstrator consists of 20 sensor nodes, a laptop and an
USB gateway to the sensor network. It allows hands-on
programming for conference participants.
 [1] ScatterWeb project, http://scatterweb.mi.fu-berlin.de

